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a b s t r a c t 

Quantitative susceptibility mapping (QSM) has demonstrated great potential in quantifying tissue susceptibil- 

ity in various brain diseases. However, the intrinsic ill-posed inverse problem relating the tissue phase to the 

underlying susceptibility distribution affects the accuracy for quantifying tissue susceptibility. Recently, deep 

learning has shown promising results to improve accuracy by reducing the streaking artifacts. However, there 

exists a mismatch between the observed phase and the theoretical forward phase estimated by the susceptibility 

label. In this study, we proposed a model-based deep learning architecture that followed the STI (susceptibility 

tensor imaging) physical model, referred to as MoDL-QSM. Specifically, MoDL-QSM accounts for the relation- 

ship between STI-derived phase contrast induced by the susceptibility tensor terms ( 𝜒13 , 𝜒23 and 𝜒33 ) and the 

acquired single-orientation phase. The convolutional neural networks are embedded into the physical model to 

learn a regularization term containing prior information. 𝜒33 and phase induced by 𝜒13 and 𝜒23 terms were used 

as the labels for network training. Quantitative evaluation metrics were compared with recently developed deep 

learning QSM methods. The results showed that MoDL-QSM achieved superior performance, demonstrating its 

potential for future applications. 
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. Introduction 

Quantitative susceptibility mapping (QSM) is a recent technique

ased on MRI phase signal that quantifies the spatial distribution of

agnetic susceptibility within a tissue ( Acosta-Cabronero et al., 2016 ;

ilgic et al., 2012 ; Haacke et al., 2015 ; Li et al., 2016 ; Liu et al.,

015 ; Schweser et al., 2013 ; Shmueli et al., 2009 ; Wang and Liu, 2015 ;

harton and Bowtell, 2010 ). QSM computes magnetic susceptibility

rom phase images of gradient-recalled echoes (GRE), typically as-

uming that phase shift results primarily from susceptibility-induced

eld inhomogeneity. The susceptibility contributors include biometals

nd molecules, e.g., iron, calcium, lipids, and myelin. Tissue suscep-

ibility is also a crucial biomarker of pathological processes. For ex-

mple, QSM has been applied for studying a variety of neurodegen-

rative diseases, e.g., brain aging, baby brain development, Parkin-
∗ Corresponding author at: School of Biomedical Engineering, Shanghai Jiao Tong

hina. 

E-mail addresses: hongjiang.wei@sjtu.edu.cn , weihjhit@gmail.com (H. Wei). 

T  

ttps://doi.org/10.1016/j.neuroimage.2021.118376 . 

eceived 20 January 2021; Received in revised form 2 July 2021; Accepted 7 July 2

vailable online 8 July 2021. 

053-8119/© 2021 The Authors. Published by Elsevier Inc. This is an open access ar

 http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
on’s disease, Alzheimer’s disease, and intracranial hemorrhage ( Acosta-

abronero et al., 2013 ; Barbosa et al., 2015 ; Betts et al., 2016 ;

hen et al., 2014 ; Du et al., 2018 ; Lotfipour et al., 2012 ; Zhang et al.,

019 ; Zhang et al., 2018 ). Furthermore, QSM has the potential to

chieve accurate target localization in deep brain stimulation (DBS),

enefitting from the improved visualization of subthalamic nucleus

STN) and globus pallidus pars internus (GPi) ( Rasouli et al., 2018 ;

ei et al., 2019b ). 

Although QSM has been demonstrated to have great potential for

esearch purposes and clinical applications, QSM reconstruction is non-

rivial. Computing susceptibility requires several processing steps in-

olving phase unwrapping, background phase removal, and solving an

nverse problem relating the tissue phase to the underlying susceptibil-

ty distribution. Among them, the dipole inversion for estimating the

usceptibility map from a local tissue field map is more complicated.

he field map must be deconvolved with a unit dipole kernel corre-
 University, 1954 Huashan Rd, MED-X Research Institute, Shanghai, 200030, 
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ponding to a pointwise division in k-space. This deconvolution is ill-

osed because of zeros in the k-space dipole kernel on two conical sur-

aces at approximately 54.7°◦ relative to the B 0 direction. The inverse

ernel is undefined at these surfaces and noise is amplified in regions

here the kernel is very small, making a simple inversion of the for-

ard calculation impractical. Different methods have been proposed to

olve the ill-posed nature of this inverse problem. In general, QSM is

olved by imposing conditions on the ill-posed inverse calculation to

easure the susceptibility distribution while minimizing noise and ar-

ifacts ( De Rochefort et al., 2008 ; Kressler et al., 2009 ; Liu et al., 2012 ;

u et al., 2012 ). However, these regularization methods are consider-

bly slow and care must be taken on the assumptions made when select-

ng spatial priors to avoid over-regularization and reduction of image

ontrast ( Wharton and Bowtell, 2010 ). 

Alternatively, another class of QSM algorithm uses multiple orienta-

ion sampling to compensate for the missing data in a single orientation,

uch as Calculation of Susceptibility through Multiple Orientation Sam-

ling (COSMOS) ( Liu et al., 2009 ) and Susceptibility Tensor Imaging

STI) ( Liu, 2010 ). These two methods require multiple scans for one

ubject with rotations of head at different orientations relative to the

ain magnetic field. COSMOS requires at least three different scanning

rientations and STI requires at least six to perform the dipole decon-

olution analytically. Although both COSMOS and STI diagonal tensor

lement 𝜒33 can be considered as the gold standard for different applica-

ion purposes, the scanning time is significantly prolonged. On the one

and, this hinders their feasibility in clinical practice and increases the

isk of motion artifacts, especially for the elderly and young children.

n the other hand, large-angle rotations for human head in a standard

unnel magnet with multi-channel head coils are limited. Thus, the mul-

iple orientation QSM reconstruction methods are usually impractical

or clinical studies. 

Recently, convolutional neural networks (CNN) have been pro-

osed to approximate the dipole inversion process and generate high-

uality QSM from single orientation phase measurements. Some of these

chemes adopted the U-Net structure ( Ronneberger et al., 2015 ) as the

ackbone. For example, DeepQSM trained the network by synthetic geo-

etric images to learn the relationship between phase and susceptibility

 Bollmann et al., 2019 ). QSMnet used realistically acquired data to learn

he COSMOS-like QSM maps ( Yoon et al., 2018 ). QSMnet + further im-

roved the performance of QSMnet by data augmentation that enlarged

he dynamic range of the training data to overcome the underestima-

ion of high susceptibility values in brain nuclei ( Jung et al., 2020 ).

utoQSM aimed to predict QSM directly from total phase maps with-

ut brain masking and background phase removal ( Wei et al., 2019a ).

nspired by the success of Generative Adversarial Networks (GANs)

 Goodfellow et al., 2014 ) in computer vision, QSMGAN adopted GANs

o further improve reconstruction quality and accuracy ( Chen et al.,

020b ). Other studies of QSM reconstruction included xQSM, which

rained an octave CNN to improve network generalization capability

 Gao et al., 2020 ). All of the above deep learning methods learn the nec-

ssary features of QSM maps via a data-driven manner. More recently,

esearchers proposed to incorporate the physical models into CNNs to

olve the dipole inversion problem. For example, Variational regularizer

or Nonlinear Dipole Inversion (VaNDI) trained a variational network

 Hammernik et al., 2017 ) to optimize the parameters in an unrolled

radient descent algorithm for non-linear dipole inversion ( Polak et al.,

019 ). Learned Proximal CNN (LPCNN) ( Lai et al., 2020 ) and proximal

ariational networks ( Kames et al., 2019 ) combined the strengths of

NN and model-based iterative solvers to learn an implicit regularizer

ia proximity operator. 

In this study, we proposed an STI-based deep learning architecture

or single-orientation QSM reconstruction, referred to as MoDL-QSM.

he main novelties of the proposed approach over related deep-learning

chemes are (1) the proposed scheme accounts for the relationship be-

ween STI-derived phase induced by the rightmost column of the sus-

eptibility tensor ( 𝜒13 , 𝜒23 and 𝜒33 ) and the acquired single-orientation
2 
hase. (2) STI component, 𝜒33 , was used as the training label to make

he network preserve the nature of anisotropic magnetic susceptibility

n brain white matter. (3) We combined the STI physical model with

NNs to learn a regularizer implicitly. (4) MoDL-QSM can simultane-

usly learn 𝜒33 and the field induced by 𝜒13 and 𝜒23 terms. Our results

emonstrate that 𝜒33 as network label makes the model-based frame-

ork more consistent with the physical assumption of single-orientation

SM algorithms. Only when 𝜒13 - and 𝜒23 -induced phase contribution is

dded to the physical model, the single orientation acquired phase can

e appropriately interpreted by the learned susceptibility distribution.

dditionally, MoDL-QSM can provide superior image quality and high

ccuracy susceptibility quantification for healthy and diseased brain tis-

ues. 

. Theory 

.1. Relationship between field perturbation and magnetic susceptibility 

When biological tissue with susceptibility distribution 𝝌 is placed

n the main magnetic field B 0 , it will be magnetized and generate a

agnetic field perturbation δ𝐵. Based on STI theory ( Liu, 2010 ), 𝝌

s orientation-dependent, which can be represented by a second-order

ymmetric tensor, i.e., 𝝌 = [ 
𝜒11 𝜒12 𝜒13 
𝜒12 𝜒22 𝜒23 
𝜒13 𝜒23 𝜒33 

] . In the subject frame of

eference, the field perturbation δ𝐵 is given by: 

 𝛿𝐵 

𝑠𝑢𝑏 = 

 𝜑 

2 𝜋𝛾𝑇 𝐸 𝐵 0 
= 

1 
3 
( ̂H 

𝑠𝑢𝑏 ) T  𝝌𝑠𝑢𝑏 Ĥ 

𝑠𝑢𝑏 − 

(
k 𝑠𝑢𝑏 

)T Ĥ 

𝑠𝑢𝑏 ( k 𝑠𝑢𝑏 ) 
T 
 𝝌𝑠𝑢𝑏 Ĥ 

𝑠𝑢𝑏 

‖k 𝑠𝑢𝑏 ‖2 2 
(1) 

here all superscripts in the formula indicate the coordinate system

sed. Standard notations indicate vector and scalar. Bold notations in-

icate matrix.  denotes the Fourier transform. γ is the gyromagnetic

atio, 𝜑 denotes tissue phase after background phase removal and 𝑇 𝐸 
s the echo time. Ĥ 

𝑠𝑢𝑏 = [ 𝐻 

𝑠𝑢𝑏 
1 , 𝐻 

𝑠𝑢𝑏 
2 , 𝐻 

𝑠𝑢𝑏 
3 ] T is the unit direction vector

f the applied main magnetic field. k 𝑠𝑢𝑏 = [ 𝑘 𝑠𝑢𝑏 
𝑥 

, 𝑘 𝑠𝑢𝑏 
𝑦 

, 𝑘 𝑠𝑢𝑏 
𝑧 

] T represents a

patial vector in the Fourier domain. ( ⋅) T denotes transposition and ‖ ⋅ ‖2 
enotes the L2 norm. When the subject frame of reference is used, 𝝌𝑠𝑢𝑏 

emains the same for each orientation and the tensor can be solved by

east-squares estimation after registering each orientation to the supine

ne (the normal position). When the laboratory frame of reference is

sed, the susceptibility tensor is rotated according to the rotation matrix

or different head orientations, while the magnetic field vector remains

long the z-axis, i.e., Ĥ 

𝑙𝑎𝑏 = [ 0 , 0 , 1 ] T : 
𝑙𝑎𝑏 = 𝐑 

T 𝝌𝑠𝑢𝑏 𝐑 (2)

here 𝐑 denotes the rotation matrix from the laboratory frame to the

ubject frame, which can be obtained by the registration process. For

he single orientation GRE data acquisition, the imaging frame coin-

ides with the laboratory frame. Considering the field is a function of

 𝝌 𝑙𝑎𝑏 Ĥ 

𝑙𝑎𝑏 , only the rightmost column of the tensor, [ 𝜒𝑙𝑎𝑏 
13 , 𝜒

𝑙𝑎𝑏 
23 , 𝜒

𝑙𝑎𝑏 
33 ] 

T ,

as contributions to field perturbation. Thus, the relationship between

eld perturbation and susceptibility tensor in the laboratory frame of

eference is simplified as: 

 𝛿𝐵 

𝑙𝑎𝑏 = 

[ 

1 
3 
− 

(
𝑘 𝑙𝑎𝑏 
𝑧 

)2 
‖k 𝑙𝑎𝑏 ‖2 2 

] 

 𝜒𝑙𝑎𝑏 
33 − 

𝑘 𝑙𝑎𝑏 
𝑧 ‖k 𝑙𝑎𝑏 ‖2 2 

(
𝑘 𝑙𝑎𝑏 
𝑥 

 𝜒𝑙𝑎𝑏 
13 + 𝑘 𝑙𝑎𝑏 

𝑦 
 𝜒𝑙𝑎𝑏 

23 

)
(3)

here 𝜒𝑙𝑎𝑏 
13 , 𝜒

𝑙𝑎𝑏 
23 , 𝜒

𝑙𝑎𝑏 
33 are three components of the rightmost column

f 𝝌 𝑙𝑎𝑏 . The field perturbation, ( 𝛿𝐵 

′) 𝑙𝑎𝑏 , derived from the off-diagonal

ensor terms, 𝜒𝑙𝑎𝑏 
13 and 𝜒𝑙𝑎𝑏 

23 , can be expressed as: 

 

(
𝛿𝐵 

′)𝑙𝑎𝑏 = − 

𝑘 𝑙𝑎𝑏 
𝑧 ‖k 𝑙𝑎𝑏 ‖2 2 

(
𝑘 𝑙𝑎𝑏 
𝑥 

𝜒𝑙𝑎𝑏 
13 + 𝑘 𝑙𝑎𝑏 

𝑦 
𝜒𝑙𝑎𝑏 

23 

)
(4)

Conventional single-orientation QSM algorithms assume that the

hase term, ( 𝛿𝐵 

′) 𝑙𝑎𝑏 , could be negligible and mainly focus on the sus-

eptibility component along the B 0 direction, i.e., 𝜒𝑙𝑎𝑏 
33 as the ground
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ruth susceptibility. Therefore, they aim to solve the following dipole

nversion problem: 

 𝛿𝐵 

𝑙𝑎𝑏 = 

[ 

1 
3 
− 

(
𝑘 𝑙𝑎𝑏 
𝑧 

)2 
‖k 𝑙𝑎𝑏 ‖2 2 

] 

 𝜒𝑙𝑎𝑏 
33 (5)

Eq. (5) motivates the use of 𝜒𝑙𝑎𝑏 
33 as the label to preserve the inherent

usceptibility anisotropy of brain white matter. Additionally, the contri-

utions from 𝜒𝑙𝑎𝑏 
13 and 𝜒𝑙𝑎𝑏 

23 components to the acquired single-orientation

hase signal are nonnegligible since they could rise to 70% amplitude

elative to 𝜒𝑙𝑎𝑏 
33 component ( Langkammer et al., 2018 ). Therefore, we

ake 𝜒𝑙𝑎𝑏 
33 and 𝛿𝐵 

′ as the learning targets of MoDL-QSM to ensure that

he overall framework is consistent with the STI model. 

.2. Combination of STI physical model and CNN 

Taking both 𝜒𝑙𝑎𝑏 
33 and 𝛿𝐵 

′ into account, Eq. (3) can be rewritten as

he following linear equation system: 

𝐵 =  

−1 
[ 

1 
3 − 

( 𝑘 𝑧 ) 2 ‖k‖2 2 1 
] 
 

[ 
𝜒33 
𝛿𝐵 

′

] 
(6)

Note that, for simplicity, we dropped the superscript “lab ”.  

−1 is the

nverse Fourier transform. Let 𝑨 denote the forward operator matrix and

ector 𝑋 denotes the voxel values of 𝜒33 and 𝛿𝐵 

′ to be solved. 

 =  

−1 
[ 

1 
3 − 

( 𝑘 𝑧 ) 2 ‖k‖2 2 1 
] 
 (7)

 = 

[ 
𝜒33 
𝛿𝐵 

′

] 
(8)

Then Eq. (6) can be expressed as: 

𝐵 = 𝑨 𝑋 (9)

Solving 𝑋 from 𝛿𝐵 is an ill-posed problem. One solution is to convert

q. (9) into a minimum optimization problem: 

̂
 = argmin 

𝑋 

𝑔 ( 𝑋 ) + 𝑅 ( 𝑋 ) (10)

here 𝑔 ( 𝑋) = 

1 
2 ‖𝑨 𝑋 − 𝛿𝐵 ‖2 2 is the data consistency term. 𝑅 ( 𝑋) is the

egularization term added according to prior information. Generally,

 ( 𝑋) is L1 norm containing non-differential points. One can use the

roximal gradient descent algorithm ( Parikh and Boyd, 2014 ) to iter-

tively solve Eq. (10) . The 𝑋 in the 𝑘 𝑡ℎ iteration can be expressed as:

̂
 

𝑘 = 𝑃 𝑟𝑜 𝑥 𝑡 𝑘 ,𝑅 
(
�̂� 

𝑘 −1 − 𝑡 𝑘 ∇ 𝑔 
(
�̂� 

𝑘 −1 )) (11)

nd 

 𝑔 
(
�̂� 

𝑘 −1 ) = 𝑨 

H (𝑨 �̂� 

𝑘 −1 − 𝛿𝐵 

)
(12)

e have 

̂
 

𝑘 = 𝑃 𝑟𝑜 𝑥 𝑡 𝑘 ,𝑅 
(
𝑡 𝑘 𝑨 

H 𝛿𝐵 + 

(
𝑰 − 𝑡 𝑘 𝑨 

H 𝑨 

)
�̂� 

𝑘 −1 ) (13)

here 𝑃 𝑟𝑜 𝑥 𝑡 𝑘 ,𝑅 ( ⋅) is the proximity operator: 

 𝑟𝑜 𝑥 𝑡 𝑘 ,𝑅 ( 𝑧 ) = argmin 
𝑋 

( 

𝑅 ( 𝑧 ) + 

1 
2 𝑡 𝑘 

‖𝑋 − 𝑧 ‖2 2 ) 

(14)

In the above formulas, 𝑡 𝑘 is the step size in the 𝑘 𝑡ℎ iteration in gradi-

nt descent. 𝑨 

H is the conjugate transpose of 𝑨 . 𝑰 represents the iden-

ity matrix. In Eq. (14) , the operator 𝑃 𝑟𝑜 𝑥 𝑡 𝑘 ,𝑅 ( ⋅) does not depend on

( 𝑋) , only depends on 𝑅 ( 𝑋) , indicating that the data consistency term

( 𝑋) and regularization term 𝑅 ( 𝑋) can be decoupled during the solving

rocess. Benefitting from this advantage of proximal gradient descent

lgorithm, we can incorporate CNNs into Eq. (13) to train a regulariza-

ion term by learning its associated proximity operator, 𝑃 𝑟𝑜 𝑥 𝑡 𝑘 ,𝑅 . The

cheme of the proposed architecture is shown in Fig. 1 (a). We unrolled

q. (13) into three iterations and initialized �̂� 

0 = 0, so the input of the

etwork was 𝑡 0 𝑨 

H 𝛿𝐵 . 𝑡 𝑘 in the 𝑘 𝑡ℎ iteration was a learnable parameter.

hree CNNs shared their weights (blue blocks in Fig. 1 (a), “C ” represents
3 
CNN ”) and replaced 𝑃 𝑟𝑜 𝑥 𝑡 𝑘 ,𝑅 with the learnable parameters. The out-

ut of each CNN performed the physical model operation (green blocks

n Fig. 1 (a), “P ” represents “Physical ”). The final output of MoDL-QSM

onsisted of two channels, 𝜒33 and 𝛿𝐵 

′. The regularization term was

earned by minimizing the L1 loss of the two channels separately be-

ween output and label. 

. Methods 

.1. Network architecture 

The network architecture is depicted in Fig. 1 (b). A CNN has a total

f 18 convolutional layers containing eight repetitive applications of

esidual learning block ( He et al., 2016 ). For the first 17 convolutional

ayers, the kernel size is 3 × 3 × 3 with stride 1. The batch normalization

ayer (BN) is used to speed up convergence. Rectified linear unit (ReLU)

s adopted as the activation function. The last convolution is 1 × 1 × 1

ith 2 output channels to simultaneously generate 𝜒33 and 𝛿𝐵 

′ maps.

he number of channels after each layer is summarized at the bottom of

locks and the output size is summarized at the top of blocks in Fig. 1 (b).

.2. MRI data acquisition and processing 

Our training data included 5 healthy volunteers with 15~23 head

rientations per subject (see Table s1 in the supplementary material for

etailed head rotation degrees). The subjects were scanned at Shang-

ai University of Sport using a 3T scanner (Prisma, Siemens Healthcare,

rlangen, Germany) equipped with a 64-channel head coil. This exper-

ment was approved by Shanghai Jiao Tong University Human Ethics

ommittee and all subjects signed informed consent before scanning. A

ulti-echo 3D GRE sequence was used with the following scan param-

ters: FOV = 210 × 224 × 160 mm 

3 , voxel size = 1 mm 

3 isotropic, TR = 38

s, TE 1 /spacing/TE 6 = 7.7/5/32.7 ms, bandwidth = 190 Hz/pixel, flip

ngle = 15°◦, GRAPPA factor = 2, and total imaging time = 8.8 minutes. For

ach volunteer, the scan was repeated at different head orientations. 

The brain mask was generated using BET in FSL ( Smith, 2002 )

n the magnitude images. Phase images were processed in STISuite

 https://people.eecs.berkeley.edu/~chunlei.liu/software.html ). First,

he raw phase data was unwrapped by Laplacian-based phase un-

rapping ( Schofield and Zhu, 2003 ). Then the background phase was

emoved using VSHARP ( Wu et al., 2012 ) to obtain the tissue phase.

dditionally, the tissue phase from different echoes was normalized

y 2 𝜋𝛾𝑇 𝐸 𝐵 0 and averaged together to obtain the field map. Finally,

he multiple orientation field maps were processed to compute the

usceptibility tensor. Specifically, the magnitude images at the first 𝑇 𝐸 
f different head orientations were coregistered to that of the supine

osition by affine transformation with 7 degrees of freedom using

SL FLIRT ( Jenkinson and Smith, 2001 ). The transformation matrix

as then applied to the corresponding field perturbation map. The

rientation of the applied magnetic field Ĥ 

𝑠𝑢𝑏 in the subject frame of

eference ( Eq. (1) ) was calculated based on the transformation matrix.

he six independent variables of the symmetric susceptibility tensor

ere computed voxel by voxel following the STI model ( Liu, 2010 ).

he obtained susceptibility tensor was converted to the laboratory

rame of reference for each orientation according to Eq. (2) . The field

erturbation, 𝛿𝐵 

′, induced by 𝜒13 and 𝜒23 , was calculated based on

q. (4) . In total, 90 pairs of input field perturbation maps and the

orresponding labels were obtained. 

.3. Network Implementation 

The proposed network structure was implemented using Python

.6.2 and Keras v2.2.5 with Tensorflow as the backend and trained us-

ng one NVIDIA 1080TI GPU. To fit into GPU memory, the patch size

or MoDL-QSM training was cropped to 48 × 48 × 48. The training

atches were generated by randomly extracting from all 90 scans. To
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Fig. 1. Overview of the proposed MoDL-QSM 

architecture. (a) The schematic diagram of 

MoDL-QSM. Three CNNs shared their weights 

(blue blocks, “C ” represents “CNN ”) and re- 

placed 𝑃 𝑟𝑜 𝑥 𝑡 𝑘 ,𝑅 with the learnable parameters. 

The output of each CNN performed the physi- 

cal model operation (green blocks, “P ” repre- 

sents “Physical ”). The final output of MoDL- 

QSM consisted of two channels, 𝜒33 and 𝛿𝐵 ′. (b) 

The network structure of the CNN. The num- 

ber of channels after each layer is summarized 

at the bottom of blocks and the output size is 

summarized at the top of blocks. 
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mprove training efficiency, patches with more than 20% background

egion were discarded. Twenty-seven thousand patches were obtained

n total. 80% of them were used for training and 20% for validation.

oDL-QSM was trained for 40 epochs. The initial learning rate was

0 − 3 and reduced to half when the validation loss didn’t decay in three

pochs. The Adam optimizer ( Kingma and Ba, 2015 ) was used with a

atch of size 2. The total training time was about 30 hours. During the

raining process, 48 × 48 × 48 patches and the corresponding full-size

ipole kernel ( 1 3 − 

( 𝑘 𝑧 ) 2 ‖k‖2 2 ) were fed into the network. To preserve high-

requency information, the 48 × 48 × 48 patches were padded to orig-

nal size to match the size of dipole kernel when performing physical

odel operator (green blocks in Fig. 1 (a)) and then were cropped back

o 48 × 48 × 48. 

For testing, MoDL-QSM can operate on full-size input data to save

econstruction time. If the GPU memory is not enough for the large size,

 “patch-then-stitch ” manner will be adopted. Specifically, the full-size

mages were cropped into 48 × 48 × 48 with 1/3 overlap. Then the

utput patches were stitched to produce complete output maps. The

ource codes and trained model ready for testing have been published

t https://github.com/Ruimin- Feng/MoDL- QSM 

.4. Evaluation of MoDL-QSM 

To demonstrate the proposed deep learning architecture with two

abels is more rational than COSMOS as the training label, we conducted

xperiment 1 to demonstrate the proposed method can well preserve

usceptibility anisotropy of brain white matter. 

Experiment 1: The original LPCNN architecture ( Lai et al., 2020 )

as trained using the same 90 training data but with COSMOS as the

abel. Then the COSMOS-labeled LPCNN and 𝜒33 -labeled MoDL-QSM

ere tested on another two subjects scanned at different orientations

sing the same scan parameters as the training data. 

Then, to evaluate the reconstruction performance of MoDL-QSM, dif-

erent datasets were used. Since these datasets differ from the train-

ng data in terms of acquisition parameters, vendors, signal-to-noise

atio (SNR), etc., the following experiments could test MoDL-QSM’s

obustness to these interference factors and further illustrate MoDL-
4 
SM’s ability to learn the regularization term in the physical model.

esides, the predicted 𝜒33 maps were also compared with conventional

nd deep learning-based methods, e.g., Thresholded K-space Division

TKD) ( Shmueli et al., 2009 ), STAR-QSM ( Wei et al., 2015 ), AutoQSM

 Wei et al., 2019a ), and QSMnet ( Yoon et al., 2018 ). The threshold in

KD method was 0.2 as suggested in the original paper. AutoQSM and

SMnet presented here were both retrained using 𝜒33 as the label cal-

ulated from our training data. 

Experiment 2: 35 scans from another two healthy volunteers (18

ead orientations for the first volunteer and 17 head orientations for

he second volunteer. See Table s2 for the detailed head rotation de-

rees) were acquired using the same scanner and imaging parameters

s the training data. Three quantitative metrics: root mean squared error

RMSE), structure similarity index (SSIM) ( Zhou et al., 2004 ), and high-

requency error norm (HFEN) ( Ravishankar and Bresler, 2011 ) were

omputed on these 35 scans and compared between different meth-

ds. To further demonstrate the quantitative accuracy of MoDL-QSM

n deep gray matters (DGMs). Five regions of interest (ROIs), putamen

PUT), globus pallidus (GP), caudate nucleus(CN), red nucleus (RN),

nd substantia nigra (SN) were segmented by registering a QSM atlas

 Zhang et al., 2018 ) to the 35 individual subjects. For each ROI, the

ean and standard deviation of susceptibility reconstructed by different

ethods were displayed. To illustrate MoDL-QSM’s ability to facilitate

he physical model of single-orientation QSM reconstruction, we com-

ared the differences between the forward-simulated phase generated

y susceptibility maps of different methods with the acquired phase. The

utput of AutoQSM (only 𝜒33 ) , QSMnet (only 𝜒33 ) , LPCNN (COSMOS)

nd MoDL-QSM ( 𝜒33 + 𝛿𝐵 

′) were used to calculate the simulated phase

aps based on their corresponding forward models, respectively. Then

ifference maps between the simulated phase maps and the acquired

ingle-orientation phase maps were calculated. Mean and standard de-

iation of L1 errors between the simulated phase maps and the acquired

ingle-orientation phase maps from the 35 scans were reported. 

Experiment 3: 2016 QSM challenge data was also used to test the

econstruction performance of AutoQSM, QSMnet, and MoDL-QSM. The

eference image 𝜒33 was used as ground truth as proposed in the original

aper ( Langkammer et al., 2018 ). For quantitative comparison, RMSE,

SIM, and HFEN for the three methods were calculated. 
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Table 1 

Quantitative performance metrics, RMSE, SSIM, and HFEN 

from the five different QSM reconstruction methods referenced 

to the label 𝜒33 . MoDL-QSM shows better performances in all 

criteria than other methods. 

RMSE SSIM HFEN 

TKD 92.42 ± 3.99 0.7753 ± 0.0165 90.23 ± 3.65 

STAR-QSM 79.57 ± 3.27 0.8180 ± 0.0160 77.26 ± 2.81 

AutoQSM 69.40 ± 2.68 0.8549 ± 0.0193 70.04 ± 2.73 

QSMnet 55.07 ± 3.24 0.8759 ± 0.0141 54.39 ± 2.70 

MoDL-QSM 54.86 ± 3.10 0.8801 ± 0.0140 54.31 ± 2.87 
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Experiment 4: To explore the potential clinical applications of MoDL-

SM, pathological data including hemorrhage, multiple sclerosis (MS),

nd micro-bleeding were used for testing. The data acquisition experi-

ents were approved by Shanghai Jiao Tong University Human Ethics

ommittee and all subjects signed informed consent before scanning.

he hemorrhage data were acquired using a 3D GRE sequence on a 3T

E HDxt MR scanner at Shanghai Ruijin Hospital with the following pa-

ameters: matrix size = 256 × 256 × 66, voxel size = 0.86 × 0.86 × 2 mm 

3 ,

R = 42.58 ms, TE 1 /spacing/TE 16 = 3.2/2.4/39.5 ms, bandwidth = 488.28

z/pixel, flip angle = 12°◦. The patients with MS were acquired using a

D GRE sequence on a 3T GE HDxt MR scanner at Shanghai Renjin Hos-

ital with the following parameters: matrix size = 256 × 256 × 124, voxel

ize = 1 mm 

3 isotropic, TR = 32.36 ms, TE 1 /spacing/TE 12 = 3.2/2.4/29.2

s, bandwidth = 488.28 Hz/pixel, flip angle = 12°◦. The micro-bleeding

ata were acquired using a 3D GRE sequence on a 3T Philips MR scan-

er at Shanghai Ruijin Hospital with the following parameters: ma-

rix size = 256 × 256 × 136, voxel size = 0.86 × 0.86 × 1 mm 

3 , TR = 45

s, TE 1 /spacing/TE 16 = 3.3/2.5/41.9 ms, bandwidth = 541 Hz/pixel, flip

ngle = 12°◦. 

Experiment 5: To test MoDL-QSM’s ability for susceptibility re-

roducibility across different sites. Ten traveling healthy volunteers

ere scanned at four different sites (Shanghai Huashan Hospital, In-

titute of Brain and Intelligence Technology, Shanghai Jiao Tong

niversity, and The Second Affiliated Hospital of Zhejiang Uni-

ersity) on four 3T scanners (UIH uMR790, Shanghai, China) us-

ng a 3D GRE sequence with the following parameters: matrix

ize = 318 × 336 × 74, voxel size = 0.65 × 0.65 × 2 mm 

3 , TR = 34.6

s, TE 1 /spacing/TE 8 = 3.3/3.7/29.2 ms, bandwidth = 280 Hz/pixel, flip

ngle = 15°◦. The data acquisition experiments were approved by Shang-

ai Jiao Tong University Human Ethics Committee and all subjects

igned informed consent before scanning. The susceptibility maps were

econstructed by STAR-QSM and MoDL-QSM, respectively. Quantita-

ively, three DGMs: PUT, GP, and CN were segmented by registering

 QSM atlas ( Zhang et al., 2018 ) to each individual. The intraclass cor-

elation coefficient (ICC) for repeated measurements was calculated us-

ng the SPSS (IBM Corp. Released 2012. IBM SPSS Statistics for Win-

ows, Version 21.0. Armonk, NY: IBM Corp). A higher ICC indicates that

he QSM reconstruction method can produce more similar susceptibil-

ty across the four sites. ICC in the range of 0 to 0.2 is considered to be

light, 0.2 to 0.4 is fair, 0.4 to 0.6 is moderate, 0.6 to 0.8 is substantial,

.8-1.0 is almost perfect ( Landis and Koch, 1977 ; Zuo and Xing, 2014 ).

Experiment 6: This experiment aims to test MoDL-QSM’s perfor-

ance on the data acquired at different field strengths. Ten healthy

olunteers were scanned using a 3D Fast Low Angle SHot (FLASH) se-

uence on a whole-body 7T scanner at Fudan University (Terra; Siemens

ealthineers, Erlangen, Germany) equipped with a 32-channel head coil

ith the following parameters: matrix size = 308 × 358 × 160, voxel

ize = 0.6 × 0.6 × 1 mm 

3 , TR = 28 ms, TE 1 /spacing/TE 5 = 4/5/24 ms,

andwidth = 305 Hz/pixel, flip angle = 15°◦. The data acquisition experi-

ents were approved by Shanghai Jiao Tong University Human Ethics

ommittee and all subjects signed informed consent before scanning.

usceptibility maps were reconstructed by STAR-QSM, AutoQSM, QSM-

et, and MoDL-QSM, respectively. To compare the delineation of small

eep gray nuclei from surroundings on the QSM images reconstructed

y different methods, the regions containing STN and GPi were zoomed

n and the susceptibility profiles from STN to SN were plotted. 

. Results 

.1. Comparison of susceptibility accuracy produced by COSMOS- and 

33 - labeled networks 

Fig. 2 compares COSMOS, COSMOS-labeled LPCNN output, 𝜒33 , and

33 -labeled MoDL-QSM output on one healthy subject at four repre-

entative head orientations. Fig. 2 (a) shows a representative axial slice

ith a manually selected ROI marked by the blue line. Fig. 2 (b) are
5 
oomed-in images of the region outlined by the white box as shown in

ig. 2 (a). Visually, the white matter fibers indicated by yellow arrows

how similar contrast between orientations on COSMOS maps. How-

ver, the QSM maps predicted by COSMOS-labeled LPCNN exhibit a

lear difference between Orientation 2 and Orientation 3, indicating a

lear mismatch with the labels. In contrast, MoDL-QSM can effectively

reserve this underlying white matter susceptibility anisotropy, consis-

ent with that in the labels 𝜒33 , as pointed by red arrows. For quantita-

ive comparisons, the white matter fiber was selected as an ROI (high-

ighted by the blue line in Fig. 2 (a)) to calculate the mean susceptibility

alues. A t -test was performed for statistical analysis. The statistically

ignificant difference was determined based on the threshold of 0.05.

s shown in Fig. 2 (c), COSMOS shows identical susceptibility across

our orientations. In contrast, COSMOS-labeled LPCNN output, 𝜒33 , and

33 -labeled MoDL-QSM output exhibit susceptibility variations between

rientations. Except for COSMOS, the other three results showed signifi-

ant differences in susceptibility between Orientation 2 and Orientation

 ( P = 0.99 for COSMOS, P < 0.001 for COSMOS-labeled LPCNN out-

ut, P < 0.001 for 𝜒33 , and P < 0.001 for 𝜒33 -labeled MoDL-QSM output).

dditionally, there were significant differences between COSMOS and

OSMOS-labeled LPCNN output ( P = 0.003 for Orientation 1, P = 0.003

or Orientation 2, and P < 0.001 for Orientation 3). However, no statis-

ically significant differences were found between 𝜒33 and 𝜒33 -labeled

oDL-QSM output for four orientations ( P = 0.12 for Orientation 1, P

 0.08 for Orientation 2, P = 0.54 for Orientation 3, P = 0.84 for Orien-

ation 4), demonstrating the susceptibility anisotropy can be well pre-

erved in 𝜒33 -labeled MoDL-QSM in brain white matter. 

.2. Evaluation of MoDL-QSM’s performance 

Fig. 3 (a) shows three orthogonal views of QSM images on one

ealthy subject using five QSM reconstruction methods. Fig. 3 (b) shows

he zoomed-in images of the region outlined by the red box in Fig. 3 (a).

he small cortical gray matter structure is more clearly observed on the

SM maps of MoDL-QSM results and label, as pointed by the yellow

rrows. Fig. 3 (c) displays the difference maps between the QSM maps

econstructed from different methods with respect to the label 𝜒33 . Au-

oQSM shows relatively larger differences in the cortex (the green ar-

ow) and QSMnet shows relatively larger differences primarily in DGMs

the blue arrow). The quantitative metrics: RMSE, SSIM, HFEN of the

ve reconstruction methods are summarized in Table 1 . The results of

oDL-QSM achieved the lowest RMSE with 54.86, the highest SSIM

ith 0.8801, and the lowest HFEN with 54.31, suggesting the best per-

ormances based on these criteria. 

Fig. 4 compares the regional susceptibility values in selected DGMs

omputed by different QSM reconstruction methods. Compared with the

abels, STAR-QSM and QSMnet show underestimated susceptibility val-

es in DGMs. In contrast, AutoQSM and MoDL-QSM have better predic-

ions for susceptibility estimations. 

Fig. 5 illustrates the reconstruction results using AutoQSM, QSMnet,

nd MoDL-QSM on the 2016 QSM challenge data. The results of Au-

oQSM and QSMnet have larger errors in GP than MoDL-QSM’s results

Mean square errors in GP: 0.0097 for AutoQSM, 0.0046 for QSMnet,
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Fig. 2. Comparisons of COSMOS, COSMOS-labeled LPCNN output, 𝜒33 , and 𝜒33 -labeled MoDL-QSM output on the same subject at four different head orientations. 

(a) A representative axial slice. (b) Zoomed-in images of the region outlined by the white box in (a). Yellow arrows point to the white matter fiber bundles that 

show similar contrast in COSMOS while showing different contrast in COSMOS-labeled LPCNN output at Orientation 2 and Orientation 3. Red arrows point to 

the preserved susceptibility anisotropy of white matter fiber bundles in both 𝜒33 and 𝜒33 -labeled MoDL-QSM output. (c) Mean susceptibility values of the white 

matter fiber highlighted by the blue line in (a). COSMOS shows identical susceptibility at four orientations. In contrast, COSMOS-labeled LPCNN output, 𝜒33 , and 

𝜒33 -labeled MoDL-QSM output exhibit consistent susceptibility changes. Except for COSMOS, the other three results show significant differences in susceptibility 

between Orientation 2 and Orientation 3 ( P < 0.05). 

Fig. 3. Comparisons of different QSM reconstruction methods 

on a healthy subject. (a) The results are displayed in three or- 

thogonal views. (b) Zoomed-in images of the region outlined 

by the red box in (a). (c) The difference maps between differ- 

ent reconstruction results and 𝜒33 labels. Green arrow points 

to the larger differences in AutoQSM maps. Blue arrow points 

to the predicted errors in the DGM on QSMnet maps. 

6 
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Fig. 4. ROI analysis from 35 field maps of different QSM reconstruction meth- 

ods. (a) QSM atlas used for ROI segmentation. (b) The susceptibility values in the 

ROIs (PUT, GP, CN, RN, SN). Data are presented as mean ± standard deviation. 

The MoDL-QSM’s results match well with the label. 

Fig. 5. Comparisons of different QSM reconstruction methods on the 2016 QSM 

challenge data. The error maps of MoDL-QSM show smaller differences relative 

to the label than the compared methods. 

Table 2 

Quantitative performance metrics, RMSE, 

SSIM, and HFEN on the 2016 QSM 

challenge data using AutoQSM, QSMnet, 

and MoDL-QSM. MoDL-QSM shows better 

RMSE and SSIM scores than other QSM 

methods and a relatively higher HFEN than 

QSMnet. 

RMSE SSIM HFEN 

AutoQSM 78.99 0.8282 73.83 

QSMnet 71.06 0.8386 66.93 

MoDL-QSM 67.91 0.8446 67.04 

Fig. 6. Comparisons between predicted 𝛿𝐵 ′ and label. (a) The predicted 𝛿𝐵 ′ by 

MoDL-QSM. (b) The corresponding labels. (c) Difference maps. 
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7 
nd 0.0026 for MoDL-QSM). RMSE, SSIM, and HFEN from the three dif-

erent QSM reconstruction methods are summarized in Table 2 . MoDL-

SM performs lowest RMSE with 67.91, highest SSIM with 0.8446, in-

icating better reconstruction results than the other two methods. 

.3. Effectiveness of δB 

′ reconstruction 

Fig. 6 (a) and Fig. 6 (b) display the predicted 𝛿𝐵 

′ by MoDL-QSM and

he corresponding labels on one healthy subject. The predicted results by

oDL-QSM reveal comparable contrast to those observed in the label. As

hown in the difference maps ( Fig. 6 (c)), there are negligible differences

elated to gray and white matter. The major discrepancies that are found

n the difference maps may be associated with flow effects in this non-

ow compensated acquisition. 

Fig. 7 compares the inconsistency between the acquired single-

rientation phase and the forward-simulated phase from the predicted

usceptibility. Fig. 7 (a) shows the simulated phase maps calculated from

esults of AutoQSM, QSMnet, LPCNN, and MoDL-QSM. The difference

aps between the simulated phases and the acquired single-orientation

hase are shown in Fig. 7 (b). The clear differences between gray and

hite matter as well as within the ventricle were observed on the results

f AutoQSM, QSMnet, and LPCNN. In contrast, MoDL-QSM based phase

rror map contains no large-scale anatomical features. L1 errors ( ×10 −3 )
etween the simulated phase maps and the acquired single-orientation

hase maps from 35 test data on two subjects were reported at the bot-

om of Fig. 7 (b), the phase maps based on MoDL-QSM results achieved

he lowest error (2.88 ± 0.09 × 10 − 3 , 3.30 ± 0.13 × 10 − 3 , 3.93 ± 0.16 ×
0 − 3 , and 4.05 ± 0.16 × 10 − 3 for MoDL-QSM, LPCNN, QSMnet, and Au-

oQSM, respectively.). 
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Fig. 7. (a) The forward-simulated phases calculated using outputs of different 

networks. (b) The difference maps of forward-simulated phase from AutoQSM, 

QSMnet, LPCNN, and MoDL-QSM with respect to the single-orientation acquired 

phase. L1 errors ( ×10 −3 ) of each network are reported under the images. 

Table 3 

The regional ICC of susceptibility values from four repeated 

scans. The susceptibility maps reconstructed by MoDL-QSM 

reveal higher ICC than STAR-QSM in both left and right sides 

of three selected ROIs. 

GP PUT CN 

ICC (Right/Left) 

STAR-QSM 0.700/0.819 0.904/0.893 0.731/0.639 

MoDL-QSM 0.932/0.902 0.926/0.904 0.946/0.896 
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.4. The practical applications of MoDL-QSM 

MoDL-QSM was also tested on patients with hemorrhage, MS, and

icro-bleeding, which were not used in the training dataset. The re-

ults of STAR-QSM exhibit residual blooming artifacts around the hem-

rrhage lesion as indicated by the blue arrow, while AutoQSM, QSMnet,

nd MoDL-QSM can well suppress these shadow artifacts ( Fig. 8 ). For

S data, all QSM reconstruction methods can detect the lesion regions,

nd small lesions can be better visible on the results of MoDL-QSM as in-

icated by blue and purple arrows ( Fig. 9 ). When applied to the patient

ith micro-bleeding ( Fig. 10 ), the lesion area is similarly delineated

rom surroundings by all the methods as pointed by red arrows. 

Fig. 11 shows susceptibility maps from one representative traveling

ubject scanned on four sites reconstructed by STAR-QSM and MoDL-

SM, respectively. The susceptibility values within CN vary between

ifferent sites on STAR-QSM maps, as pointed by the red arrows. In con-

rast, MoDL-QSM results reveal a more consistent susceptibility contrast

n CN among different sites. Quantitatively, the regional ICC of suscep-

ibility values from four repeated scans was reported in Table 3 . The

usceptibility maps reconstructed by MoDL-QSM reveal higher ICC than

TAR-QSM in three selected DGMs, suggesting that MoDL-QSM has bet-

er reproducibility in DGMs for the same subjects in different scanning

onditions. 

Fig. 12 shows the reconstruction results on the 7T dataset us-

ng STAR-QSM, AutoQSM, QSMnet, and MoDL-QSM. As shown in the

oomed-in images, the STN, SN, GPi, and GPe (i.e., globus pallidus ex-

ernus) can be observed on the QSM maps of the four methods. Fig. 12 (b)

lots the susceptibility profiles along the green line crossing STN and SN

n Fig. 12 (a), the susceptibility change along the profile in STAR-QSM

nd MoDL-QSM images is relatively sharper than that in AutoQSM and

SMnet, indicating STN and SN can be better distinguished by these

wo methods. It should be noted that STAR-QSM suffers from artifacts

round STN and SN. 

. Discussion 

In this study, we proposed a model-based deep learning framework

or QSM reconstruction. We incorporated the susceptibility tensor com-
8 
onents into our proposed scheme for network training and the results

howed several advantages over the state-of-the-art QSM methods: (1)

he proposed deep-learning scheme accounts for the relationship be-

ween STI-derived phase induced by the rightmost column of the sus-

eptibility tensor ( 𝜒13 , 𝜒23 and 𝜒33 ) and the acquired single-orientation

hase. (2) STI component, 𝜒33 , was used as the training label to make

he network preserve the nature of anisotropic magnetic susceptibility

n brain white matter. (3) MoDL-QSM can simultaneously produce 𝜒33 
nd the field perturbation induced by 𝜒13 and 𝜒23 terms. Our results

howed that MoDL-QSM provided a more proper ground truth suscepti-

ility for single-orientation QSM reconstruction. Testing on the healthy

nd diseased brain datasets demonstrates the superiority of MoDL-QSM

ver the compared methods. 

Most of the current implementations of deep learning QSM utilize

OSMOS as the ground truth susceptibility. COSMOS models suscepti-

ility as an isotropic property, ignoring the anisotropic nature of sus-

eptibility in white matter. Thus, COSMOS susceptibility maps would

ot provide an accurate reference for single-orientation QSM. To miti-

ate this orientation bias in white matter, we chose susceptibility ten-

or elements as the label for training our network. As shown in Fig. 2 ,

he observed susceptibility contrast in COSMOS-labeled LPCNN output

s not consistent with the COSMOS label at each orientation. This is

ainly because that COSMOS susceptibility reflects the effective mag-

etic susceptibility by averaging dipole kernels of different orientations.

or model-based deep learning, the network is embedded into the phys-

cal model to learn a regularization term. In the QSM reconstruction

hysical model, only dipole kernel from one orientation is available.

hus, the network output preserves susceptibility anisotropy at that ori-

ntation as illustrated in Fig. 2 . Unlike COSMOS, STI uses a second-order

ymmetric tensor to characterize the susceptibility anisotropy, where

33 represents the apparent susceptibility along the z-axis. In this study,

33 in the laboratory frame of reference was considered as the ground

ruth susceptibility for single-orientation QSM reconstruction. The con-

istent susceptibility changes in 𝜒33 and MoDL-QSM’s output ( Fig. 2 (c))

urther demonstrate that 𝜒33 can mitigate the susceptibility bias in brain

hite matter. Therefore, we collected data from a wide range of head

rientations to reconstruct high-quality STI maps and used 𝜒33 as the

abel for network training. 

Taking the tensor components of 𝜒13 and 𝜒23 into account, the pro-

osed deep-learning scheme can improve the network’s performance.

raditional QSM reconstruction methods ignore the contributions of 𝜒13 
nd 𝜒23 terms to the measured phase, and consider the tissue phase com-

letely from 𝜒33 . In this study, we used CNN to learn the regularization

erm that can simultaneously reconstruct 𝜒33 and the field perturbation

𝐵 

′ induced by 𝜒13 and 𝜒23 . Therefore, the framework of MoDL-QSM

as more consistent with STI physical model. Additionally, quantitative

erformance metrics ( Table 1 ) and ROI analysis ( Fig. 4 ) demonstrated

hat MoDL-QSM benefits the incorporation of 𝛿𝐵 

′ into the proposed ar-

hitecture. The results of 𝛿𝐵 

′ from MoDL-QSM show smoother contrast

ompared with the label ( Fig. 6 ). One possible reason is that the qual-

ty of label 𝛿𝐵 

′ map varies significantly between orientations due to

he artifacts in 𝜒13 and 𝜒23 , while network training acts as a regres-

ion process. In practice, the contribution of 𝛿𝐵 

′ to the measured phase

ostly comes from microstructure effects, which may have orientation

ependency. Other potential sources of errors such as vascular flux and

otion might also be considered. Despite the imperfection, the forward-

imulated phase from MoDL-QSM is more consistent with the acquired

hase, demonstrating the phase contribution from 𝛿𝐵 

′ is nonnegligible.

In MoDL-QSM, the proximal gradient descent process was unrolled

nto 3 iterations. Different iteration numbers were also investigated and

he quantitative performance metrics of 𝜒33 and 𝛿𝐵 

′ were reported in

able s3 and Table s4 (see supplementary material). The reconstruction

erformance was improved as we increased the number of iterations

rom 2 to 3. However, keeping increasing the iteration number from 3

o 4 did not lead to a sustained improvement for both 𝜒33 and 𝛿𝐵 

′. This

ight be because MoDL-QSM shares weights across iterations and in-



R. Feng, J. Zhao, H. Wang et al. NeuroImage 240 (2021) 118376 

Fig. 8. Representative sagittal slices of QSM images computed using STAR-QSM, AutoQSM, QSMnet, and MoDL-QSM on a patient with hemorrhage. The QSM image 

of STAR-QSM exhibits blooming artifacts (indicated by the blue arrow) around the lesion, while AutoQSM, QSMnet, and MoDL-QSM can well suppress these shadow 

artifacts. 

Fig. 9. Representative coronal slices of QSM images computed 

using STAR-QSM, AutoQSM, QSMnet, and MoDL-QSM on two 

MS patients. The arrows point to the MS lesions. 

Fig. 10. Representative axial slices of QSM images computed 

using STAR-QSM, AutoQSM, QSMnet, and MoDL-QSM on a pa- 

tient with micro-bleeding. The lesion area (red arrow) is simi- 

larly delineated in all the methods. 

Fig. 11. Susceptibility maps from a traveling subject scanned 

at four sites reconstructed by STAR-QSM and MoDL-QSM. Red 

arrows indicate the susceptibility values within CN vary be- 

tween sites on STAR-QSM maps. In contrast, MoDL-QSM re- 

sults reveal a more consistent susceptibility contrast. 
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reasing iterative process makes it more complicated to learn a common

egularization term between the inputs and outputs in each iteration. In

he future, more efforts are needed to compare the reconstruction per-

ormance in the weight-shared MoDL-QSM and non-shared MoDL-QSM.

On the 2016 QSM challenge data, MoDL-QSM shows a slightly higher

FEN compared with QSMnet ( Table 2 ). The 2016 QSM challenge data

as acquired using a 3D GRE sequence with an R = 15 fold accelerated

ave-CAIPI acquisition ( Bilgic et al., 2016 ), which has a lower SNR

ompared to our training data. Please note that we are ignoring noise

ffects in the MoDL-QSM estimations as sources of errors. The regular-

zer learned by MoDL-QSM may degrade performance when processing

he input phases with much higher noise levels. QSMnet shows a slightly

ower HFEN than MoDL-QSM when testing on this challenge data. One

ossible reason is that the convolution kernel size used in QSMnet is 5

5 × 5, which has a larger receptive field than the kernel size of 3 ×
9 
 × 3. A relatively large receptive field allows the network to capture

ore non-local phase information. However, it will greatly increase the

odel size and computational cost ( Szegedy et al., 2016 ). MoDL-QSM

chieves better performance regarding RMSE and SSIM, demonstrating

he superiority of MoDL-QSM to other compared methods. 

The results of hemorrhage data showed that MoDL-QSM could well

elineate lesion boundaries and suppress artifacts around large suscep-

ibility sources ( Fig. 8 ). The MS lesion boundaries were clearly visi-

le on MoDL-QSM images but showed ambiguity on STAR-QSM images

 Fig. 9 ), suggesting the potential of MoDL-QSM in detecting and char-

cterizing small MS lesions in clinical applications. 

Furthermore, the multicenter traveling subject experiment was also

arried out in this study. In the repeated scans at four sites, the trav-

ling subjects were scanned in the normal supine position. Therefore,

he head orientation related to the main magnetic field could be sim-
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Fig. 12. One representative 7T dataset reconstructed by STAR-QSM, AutoQSM, 

QSMnet, and MoDL-QSM. (a) Three orthogonal views and zoomed-in images 

of the region outlined by the red box containing STN and GPi. (b) Susceptibil- 

ity profiles along the green line crossing STN and SN in (a). The susceptibility 

change in STAR-QSM and MoDL-QSM is relatively sharper than that in AutoQSM 

and QSMnet. 
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lar between scans. Additionally, DGMs with mainly iron deposits are

onsidered to be isotropic tissues. Therefore, the susceptibility in DGMs

hould be identical between different scans. As shown in Fig. 11 , the

usceptibility of CN in STAR-QSM maps varies between scans while that

n MoDL-QSM maps is more consistent. The higher ICC values across dif-

erent sites in three DGMs of MoDL-QSM further support these observa-

ions quantitatively. The results indicate that MoDL-QSM is more robust

o the interferences, e.g., the distance between head position and coil,

hermal noise level when the subjects were scanned longitudinally. The

dvantages of high reproducibility and less quantification error demon-

trate MoDL-QSM’s potential for reliable longitudinal measurements of

usceptibility time courses, enabling more precise monitoring for metal

ons accumulation in neurodegenerative disorders, e.g., Parkinson’s dis-

ase and Alzheimer’s disease. 

The content of cortical iron has been increasingly recognized as a

iomarker in Alzheimer’s disease and cognitive decline ( Bulk et al.,

018 ; Chen et al., 2020a ; Damulina et al., 2020 ; van Duijn et al., 2017 ).

owever, the artifacts between cortical gray and white matter pro-

ided by conventional reconstruction methods hinder QSM’s precision

n cortical iron quantification. In this study, the results of MoDL-QSM

howed that artifacts in the cortical areas could be well suppressed

nd gray-white matter boundaries can be revealed ( Fig. 2 &3). This

utcome may provide great potential to achieve iron quantification in

he high-resolution ex vivo cortex and in the superficial white matter

 Kirilina et al., 2020 ), which is helpful to further investigate the patho-

enesis of Alzheimer’s disease. 

The benefit of ultrahigh-field 7T for QSM has been recognized as in-

reasing interest ( Bian et al., 2016 ; Li et al., 2012 ). However, the MRI

ignal acquired at 7T is more sensitive to field inhomogeneity and suf-

ers from more rapid decay that causes a higher noise level when high-
10 
esolution data is required. These factors bring challenges to the dipole

nversion problem for high-quality QSM. The resulting images suffer

rom poor quality and streaking artifacts around the region with large

usceptibility variations. As illustrated in Fig. 12 , the STAR-QSM results

how artifacts around STN and GPi. While these artifacts on MoDL-QSM

aps are invisible, suggesting MoDL-QSM can provide confident tissue

tructural boundaries. The improved visualization makes it possible for

T QSM to guide DBS, which is valuable since the accurate electrode

ocalization has been proven critical for a successful outcome, such as

TN and GPi DBS for Parkinson’s disease patients ( Kelman et al., 2010 ).

The trained MoDL-QSM has some limitations. Firstly, MoDL-QSM

akes both 𝜒33 and 𝛿𝐵 

′ into account to make the proposed framework

ore consistent with STI physical model. However, the tissue phase

riginates not only from magnetic susceptibility but also from the chem-

cal shift ( Kuchel et al., 2003 ), chemical exchange ( Shmueli et al., 2011 ),

nd complex tissue microstructure ( Wharton and Bowtell, 2012 ). These

ources are not considered in the STI model or might be incorrectly as-

igned to STI components. Secondly, in Fig. 7 , we demonstrated 𝛿𝐵 

′

s a part of field perturbation that could not be ignored. The potential

ources and applications of 𝛿𝐵 

′ need to be further investigated. 

. Conclusion 

We proposed an STI model-based deep learning framework for

ingle-orientation QSM reconstruction. We first demonstrated that 𝜒33 
s more rational as the label than COSMOS. Thanks to the powerful fea-

ure extraction and characterization ability of CNN, we incorporate both

33 and phase contributions from 𝜒13 and 𝜒23 to force MoDL-QSM to

ollow the STI model. Qualitative and quantitative comparisons show

hat MoDL-QSM has superior reconstruction performance than com-

ared QSM methods. MoDL-QSM offers a way to generate high-quality

SM and may provide clinical values for well characterizing the lesions,

.g., MS or providing high fidelity anatomical delineation of brain nu-

leus for DBS targeting. 
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